Рассчитать высоту треугольника со сторонами 89, 72 и 54

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{89 + 72 + 54}{2}} \normalsize = 107.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{107.5(107.5-89)(107.5-72)(107.5-54)}}{72}\normalsize = 53.9856908}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{107.5(107.5-89)(107.5-72)(107.5-54)}}{89}\normalsize = 43.6738173}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{107.5(107.5-89)(107.5-72)(107.5-54)}}{54}\normalsize = 71.9809211}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 89, 72 и 54 равна 53.9856908
Высота треугольника опущенная с вершины A на сторону BC со сторонами 89, 72 и 54 равна 43.6738173
Высота треугольника опущенная с вершины C на сторону AB со сторонами 89, 72 и 54 равна 71.9809211
Ссылка на результат
?n1=89&n2=72&n3=54