Рассчитать высоту треугольника со сторонами 89, 72 и 58
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{89 + 72 + 58}{2}} \normalsize = 109.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{109.5(109.5-89)(109.5-72)(109.5-58)}}{72}\normalsize = 57.8363314}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{109.5(109.5-89)(109.5-72)(109.5-58)}}{89}\normalsize = 46.7889423}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{109.5(109.5-89)(109.5-72)(109.5-58)}}{58}\normalsize = 71.7968252}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 89, 72 и 58 равна 57.8363314
Высота треугольника опущенная с вершины A на сторону BC со сторонами 89, 72 и 58 равна 46.7889423
Высота треугольника опущенная с вершины C на сторону AB со сторонами 89, 72 и 58 равна 71.7968252
Ссылка на результат
?n1=89&n2=72&n3=58
Найти высоту треугольника со сторонами 111, 95 и 68
Найти высоту треугольника со сторонами 144, 89 и 60
Найти высоту треугольника со сторонами 115, 96 и 90
Найти высоту треугольника со сторонами 140, 124 и 106
Найти высоту треугольника со сторонами 102, 68 и 65
Найти высоту треугольника со сторонами 74, 42 и 35
Найти высоту треугольника со сторонами 144, 89 и 60
Найти высоту треугольника со сторонами 115, 96 и 90
Найти высоту треугольника со сторонами 140, 124 и 106
Найти высоту треугольника со сторонами 102, 68 и 65
Найти высоту треугольника со сторонами 74, 42 и 35