Рассчитать высоту треугольника со сторонами 89, 73 и 21

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{89 + 73 + 21}{2}} \normalsize = 91.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{91.5(91.5-89)(91.5-73)(91.5-21)}}{73}\normalsize = 14.9647033}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{91.5(91.5-89)(91.5-73)(91.5-21)}}{89}\normalsize = 12.2744195}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{91.5(91.5-89)(91.5-73)(91.5-21)}}{21}\normalsize = 52.020159}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 89, 73 и 21 равна 14.9647033
Высота треугольника опущенная с вершины A на сторону BC со сторонами 89, 73 и 21 равна 12.2744195
Высота треугольника опущенная с вершины C на сторону AB со сторонами 89, 73 и 21 равна 52.020159
Ссылка на результат
?n1=89&n2=73&n3=21