Рассчитать высоту треугольника со сторонами 89, 77 и 57
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{89 + 77 + 57}{2}} \normalsize = 111.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{111.5(111.5-89)(111.5-77)(111.5-57)}}{77}\normalsize = 56.412554}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{111.5(111.5-89)(111.5-77)(111.5-57)}}{89}\normalsize = 48.8063669}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{111.5(111.5-89)(111.5-77)(111.5-57)}}{57}\normalsize = 76.2064325}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 89, 77 и 57 равна 56.412554
Высота треугольника опущенная с вершины A на сторону BC со сторонами 89, 77 и 57 равна 48.8063669
Высота треугольника опущенная с вершины C на сторону AB со сторонами 89, 77 и 57 равна 76.2064325
Ссылка на результат
?n1=89&n2=77&n3=57
Найти высоту треугольника со сторонами 98, 74 и 54
Найти высоту треугольника со сторонами 141, 117 и 50
Найти высоту треугольника со сторонами 144, 120 и 110
Найти высоту треугольника со сторонами 93, 81 и 15
Найти высоту треугольника со сторонами 109, 97 и 22
Найти высоту треугольника со сторонами 74, 50 и 37
Найти высоту треугольника со сторонами 141, 117 и 50
Найти высоту треугольника со сторонами 144, 120 и 110
Найти высоту треугольника со сторонами 93, 81 и 15
Найти высоту треугольника со сторонами 109, 97 и 22
Найти высоту треугольника со сторонами 74, 50 и 37