Рассчитать высоту треугольника со сторонами 89, 77 и 68

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{89 + 77 + 68}{2}} \normalsize = 117}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{117(117-89)(117-77)(117-68)}}{77}\normalsize = 65.8171773}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{117(117-89)(117-77)(117-68)}}{89}\normalsize = 56.9429511}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{117(117-89)(117-77)(117-68)}}{68}\normalsize = 74.5282743}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 89, 77 и 68 равна 65.8171773
Высота треугольника опущенная с вершины A на сторону BC со сторонами 89, 77 и 68 равна 56.9429511
Высота треугольника опущенная с вершины C на сторону AB со сторонами 89, 77 и 68 равна 74.5282743
Ссылка на результат
?n1=89&n2=77&n3=68