Рассчитать высоту треугольника со сторонами 89, 80 и 72
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{89 + 80 + 72}{2}} \normalsize = 120.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{120.5(120.5-89)(120.5-80)(120.5-72)}}{80}\normalsize = 68.263286}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{120.5(120.5-89)(120.5-80)(120.5-72)}}{89}\normalsize = 61.360257}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{120.5(120.5-89)(120.5-80)(120.5-72)}}{72}\normalsize = 75.8480955}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 89, 80 и 72 равна 68.263286
Высота треугольника опущенная с вершины A на сторону BC со сторонами 89, 80 и 72 равна 61.360257
Высота треугольника опущенная с вершины C на сторону AB со сторонами 89, 80 и 72 равна 75.8480955
Ссылка на результат
?n1=89&n2=80&n3=72
Найти высоту треугольника со сторонами 99, 91 и 31
Найти высоту треугольника со сторонами 131, 70 и 69
Найти высоту треугольника со сторонами 126, 121 и 76
Найти высоту треугольника со сторонами 144, 115 и 66
Найти высоту треугольника со сторонами 113, 66 и 58
Найти высоту треугольника со сторонами 147, 137 и 24
Найти высоту треугольника со сторонами 131, 70 и 69
Найти высоту треугольника со сторонами 126, 121 и 76
Найти высоту треугольника со сторонами 144, 115 и 66
Найти высоту треугольника со сторонами 113, 66 и 58
Найти высоту треугольника со сторонами 147, 137 и 24