Рассчитать высоту треугольника со сторонами 89, 81 и 56
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{89 + 81 + 56}{2}} \normalsize = 113}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{113(113-89)(113-81)(113-56)}}{81}\normalsize = 54.9164223}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{113(113-89)(113-81)(113-56)}}{89}\normalsize = 49.9801147}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{113(113-89)(113-81)(113-56)}}{56}\normalsize = 79.4326823}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 89, 81 и 56 равна 54.9164223
Высота треугольника опущенная с вершины A на сторону BC со сторонами 89, 81 и 56 равна 49.9801147
Высота треугольника опущенная с вершины C на сторону AB со сторонами 89, 81 и 56 равна 79.4326823
Ссылка на результат
?n1=89&n2=81&n3=56
Найти высоту треугольника со сторонами 67, 43 и 28
Найти высоту треугольника со сторонами 46, 31 и 26
Найти высоту треугольника со сторонами 115, 96 и 33
Найти высоту треугольника со сторонами 97, 89 и 41
Найти высоту треугольника со сторонами 119, 92 и 77
Найти высоту треугольника со сторонами 36, 30 и 9
Найти высоту треугольника со сторонами 46, 31 и 26
Найти высоту треугольника со сторонами 115, 96 и 33
Найти высоту треугольника со сторонами 97, 89 и 41
Найти высоту треугольника со сторонами 119, 92 и 77
Найти высоту треугольника со сторонами 36, 30 и 9