Рассчитать высоту треугольника со сторонами 89, 82 и 23
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{89 + 82 + 23}{2}} \normalsize = 97}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{97(97-89)(97-82)(97-23)}}{82}\normalsize = 22.6364591}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{97(97-89)(97-82)(97-23)}}{89}\normalsize = 20.8560634}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{97(97-89)(97-82)(97-23)}}{23}\normalsize = 80.7038976}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 89, 82 и 23 равна 22.6364591
Высота треугольника опущенная с вершины A на сторону BC со сторонами 89, 82 и 23 равна 20.8560634
Высота треугольника опущенная с вершины C на сторону AB со сторонами 89, 82 и 23 равна 80.7038976
Ссылка на результат
?n1=89&n2=82&n3=23
Найти высоту треугольника со сторонами 122, 75 и 67
Найти высоту треугольника со сторонами 142, 133 и 36
Найти высоту треугольника со сторонами 108, 70 и 57
Найти высоту треугольника со сторонами 150, 117 и 41
Найти высоту треугольника со сторонами 132, 91 и 88
Найти высоту треугольника со сторонами 78, 69 и 53
Найти высоту треугольника со сторонами 142, 133 и 36
Найти высоту треугольника со сторонами 108, 70 и 57
Найти высоту треугольника со сторонами 150, 117 и 41
Найти высоту треугольника со сторонами 132, 91 и 88
Найти высоту треугольника со сторонами 78, 69 и 53