Рассчитать высоту треугольника со сторонами 89, 86 и 19
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{89 + 86 + 19}{2}} \normalsize = 97}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{97(97-89)(97-86)(97-19)}}{86}\normalsize = 18.9760602}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{97(97-89)(97-86)(97-19)}}{89}\normalsize = 18.3364177}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{97(97-89)(97-86)(97-19)}}{19}\normalsize = 85.8916408}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 89, 86 и 19 равна 18.9760602
Высота треугольника опущенная с вершины A на сторону BC со сторонами 89, 86 и 19 равна 18.3364177
Высота треугольника опущенная с вершины C на сторону AB со сторонами 89, 86 и 19 равна 85.8916408
Ссылка на результат
?n1=89&n2=86&n3=19
Найти высоту треугольника со сторонами 143, 106 и 61
Найти высоту треугольника со сторонами 132, 128 и 114
Найти высоту треугольника со сторонами 118, 70 и 68
Найти высоту треугольника со сторонами 146, 144 и 57
Найти высоту треугольника со сторонами 99, 70 и 40
Найти высоту треугольника со сторонами 145, 129 и 103
Найти высоту треугольника со сторонами 132, 128 и 114
Найти высоту треугольника со сторонами 118, 70 и 68
Найти высоту треугольника со сторонами 146, 144 и 57
Найти высоту треугольника со сторонами 99, 70 и 40
Найти высоту треугольника со сторонами 145, 129 и 103