Рассчитать высоту треугольника со сторонами 89, 86 и 31
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{89 + 86 + 31}{2}} \normalsize = 103}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{103(103-89)(103-86)(103-31)}}{86}\normalsize = 30.8961869}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{103(103-89)(103-86)(103-31)}}{89}\normalsize = 29.8547424}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{103(103-89)(103-86)(103-31)}}{31}\normalsize = 85.7120023}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 89, 86 и 31 равна 30.8961869
Высота треугольника опущенная с вершины A на сторону BC со сторонами 89, 86 и 31 равна 29.8547424
Высота треугольника опущенная с вершины C на сторону AB со сторонами 89, 86 и 31 равна 85.7120023
Ссылка на результат
?n1=89&n2=86&n3=31
Найти высоту треугольника со сторонами 82, 57 и 55
Найти высоту треугольника со сторонами 142, 103 и 53
Найти высоту треугольника со сторонами 129, 104 и 68
Найти высоту треугольника со сторонами 126, 100 и 80
Найти высоту треугольника со сторонами 129, 119 и 14
Найти высоту треугольника со сторонами 64, 64 и 10
Найти высоту треугольника со сторонами 142, 103 и 53
Найти высоту треугольника со сторонами 129, 104 и 68
Найти высоту треугольника со сторонами 126, 100 и 80
Найти высоту треугольника со сторонами 129, 119 и 14
Найти высоту треугольника со сторонами 64, 64 и 10