Рассчитать высоту треугольника со сторонами 89, 86 и 71
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{89 + 86 + 71}{2}} \normalsize = 123}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{123(123-89)(123-86)(123-71)}}{86}\normalsize = 65.9669026}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{123(123-89)(123-86)(123-71)}}{89}\normalsize = 63.7432991}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{123(123-89)(123-86)(123-71)}}{71}\normalsize = 79.9035721}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 89, 86 и 71 равна 65.9669026
Высота треугольника опущенная с вершины A на сторону BC со сторонами 89, 86 и 71 равна 63.7432991
Высота треугольника опущенная с вершины C на сторону AB со сторонами 89, 86 и 71 равна 79.9035721
Ссылка на результат
?n1=89&n2=86&n3=71
Найти высоту треугольника со сторонами 113, 113 и 68
Найти высоту треугольника со сторонами 144, 118 и 76
Найти высоту треугольника со сторонами 120, 70 и 70
Найти высоту треугольника со сторонами 63, 54 и 37
Найти высоту треугольника со сторонами 101, 90 и 21
Найти высоту треугольника со сторонами 116, 88 и 46
Найти высоту треугольника со сторонами 144, 118 и 76
Найти высоту треугольника со сторонами 120, 70 и 70
Найти высоту треугольника со сторонами 63, 54 и 37
Найти высоту треугольника со сторонами 101, 90 и 21
Найти высоту треугольника со сторонами 116, 88 и 46