Рассчитать высоту треугольника со сторонами 90, 56 и 51

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{90 + 56 + 51}{2}} \normalsize = 98.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{98.5(98.5-90)(98.5-56)(98.5-51)}}{56}\normalsize = 46.4312971}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{98.5(98.5-90)(98.5-56)(98.5-51)}}{90}\normalsize = 28.8905849}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{98.5(98.5-90)(98.5-56)(98.5-51)}}{51}\normalsize = 50.9833851}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 90, 56 и 51 равна 46.4312971
Высота треугольника опущенная с вершины A на сторону BC со сторонами 90, 56 и 51 равна 28.8905849
Высота треугольника опущенная с вершины C на сторону AB со сторонами 90, 56 и 51 равна 50.9833851
Ссылка на результат
?n1=90&n2=56&n3=51