Рассчитать высоту треугольника со сторонами 90, 65 и 47
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{90 + 65 + 47}{2}} \normalsize = 101}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{101(101-90)(101-65)(101-47)}}{65}\normalsize = 45.219088}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{101(101-90)(101-65)(101-47)}}{90}\normalsize = 32.6582302}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{101(101-90)(101-65)(101-47)}}{47}\normalsize = 62.5370366}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 90, 65 и 47 равна 45.219088
Высота треугольника опущенная с вершины A на сторону BC со сторонами 90, 65 и 47 равна 32.6582302
Высота треугольника опущенная с вершины C на сторону AB со сторонами 90, 65 и 47 равна 62.5370366
Ссылка на результат
?n1=90&n2=65&n3=47
Найти высоту треугольника со сторонами 130, 84 и 66
Найти высоту треугольника со сторонами 141, 139 и 26
Найти высоту треугольника со сторонами 62, 56 и 29
Найти высоту треугольника со сторонами 144, 105 и 73
Найти высоту треугольника со сторонами 77, 59 и 27
Найти высоту треугольника со сторонами 93, 61 и 41
Найти высоту треугольника со сторонами 141, 139 и 26
Найти высоту треугольника со сторонами 62, 56 и 29
Найти высоту треугольника со сторонами 144, 105 и 73
Найти высоту треугольника со сторонами 77, 59 и 27
Найти высоту треугольника со сторонами 93, 61 и 41