Рассчитать высоту треугольника со сторонами 90, 69 и 26
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{90 + 69 + 26}{2}} \normalsize = 92.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{92.5(92.5-90)(92.5-69)(92.5-26)}}{69}\normalsize = 17.4247489}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{92.5(92.5-90)(92.5-69)(92.5-26)}}{90}\normalsize = 13.3589742}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{92.5(92.5-90)(92.5-69)(92.5-26)}}{26}\normalsize = 46.242603}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 90, 69 и 26 равна 17.4247489
Высота треугольника опущенная с вершины A на сторону BC со сторонами 90, 69 и 26 равна 13.3589742
Высота треугольника опущенная с вершины C на сторону AB со сторонами 90, 69 и 26 равна 46.242603
Ссылка на результат
?n1=90&n2=69&n3=26
Найти высоту треугольника со сторонами 126, 101 и 101
Найти высоту треугольника со сторонами 142, 93 и 59
Найти высоту треугольника со сторонами 137, 104 и 76
Найти высоту треугольника со сторонами 132, 92 и 63
Найти высоту треугольника со сторонами 121, 110 и 69
Найти высоту треугольника со сторонами 119, 92 и 63
Найти высоту треугольника со сторонами 142, 93 и 59
Найти высоту треугольника со сторонами 137, 104 и 76
Найти высоту треугольника со сторонами 132, 92 и 63
Найти высоту треугольника со сторонами 121, 110 и 69
Найти высоту треугольника со сторонами 119, 92 и 63