Рассчитать высоту треугольника со сторонами 90, 70 и 39
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{90 + 70 + 39}{2}} \normalsize = 99.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{99.5(99.5-90)(99.5-70)(99.5-39)}}{70}\normalsize = 37.1102597}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{99.5(99.5-90)(99.5-70)(99.5-39)}}{90}\normalsize = 28.8635353}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{99.5(99.5-90)(99.5-70)(99.5-39)}}{39}\normalsize = 66.6081585}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 90, 70 и 39 равна 37.1102597
Высота треугольника опущенная с вершины A на сторону BC со сторонами 90, 70 и 39 равна 28.8635353
Высота треугольника опущенная с вершины C на сторону AB со сторонами 90, 70 и 39 равна 66.6081585
Ссылка на результат
?n1=90&n2=70&n3=39
Найти высоту треугольника со сторонами 117, 81 и 50
Найти высоту треугольника со сторонами 93, 72 и 34
Найти высоту треугольника со сторонами 115, 114 и 6
Найти высоту треугольника со сторонами 140, 131 и 86
Найти высоту треугольника со сторонами 44, 44 и 14
Найти высоту треугольника со сторонами 145, 141 и 120
Найти высоту треугольника со сторонами 93, 72 и 34
Найти высоту треугольника со сторонами 115, 114 и 6
Найти высоту треугольника со сторонами 140, 131 и 86
Найти высоту треугольника со сторонами 44, 44 и 14
Найти высоту треугольника со сторонами 145, 141 и 120