Рассчитать высоту треугольника со сторонами 90, 74 и 51
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{90 + 74 + 51}{2}} \normalsize = 107.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{107.5(107.5-90)(107.5-74)(107.5-51)}}{74}\normalsize = 50.9997632}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{107.5(107.5-90)(107.5-74)(107.5-51)}}{90}\normalsize = 41.9331387}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{107.5(107.5-90)(107.5-74)(107.5-51)}}{51}\normalsize = 73.9996564}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 90, 74 и 51 равна 50.9997632
Высота треугольника опущенная с вершины A на сторону BC со сторонами 90, 74 и 51 равна 41.9331387
Высота треугольника опущенная с вершины C на сторону AB со сторонами 90, 74 и 51 равна 73.9996564
Ссылка на результат
?n1=90&n2=74&n3=51
Найти высоту треугольника со сторонами 105, 91 и 69
Найти высоту треугольника со сторонами 124, 77 и 48
Найти высоту треугольника со сторонами 120, 75 и 71
Найти высоту треугольника со сторонами 116, 115 и 22
Найти высоту треугольника со сторонами 128, 98 и 66
Найти высоту треугольника со сторонами 146, 101 и 86
Найти высоту треугольника со сторонами 124, 77 и 48
Найти высоту треугольника со сторонами 120, 75 и 71
Найти высоту треугольника со сторонами 116, 115 и 22
Найти высоту треугольника со сторонами 128, 98 и 66
Найти высоту треугольника со сторонами 146, 101 и 86