Рассчитать высоту треугольника со сторонами 90, 75 и 54
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{90 + 75 + 54}{2}} \normalsize = 109.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{109.5(109.5-90)(109.5-75)(109.5-54)}}{75}\normalsize = 53.9199073}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{109.5(109.5-90)(109.5-75)(109.5-54)}}{90}\normalsize = 44.9332561}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{109.5(109.5-90)(109.5-75)(109.5-54)}}{54}\normalsize = 74.8887601}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 90, 75 и 54 равна 53.9199073
Высота треугольника опущенная с вершины A на сторону BC со сторонами 90, 75 и 54 равна 44.9332561
Высота треугольника опущенная с вершины C на сторону AB со сторонами 90, 75 и 54 равна 74.8887601
Ссылка на результат
?n1=90&n2=75&n3=54
Найти высоту треугольника со сторонами 63, 41 и 38
Найти высоту треугольника со сторонами 107, 96 и 42
Найти высоту треугольника со сторонами 117, 101 и 23
Найти высоту треугольника со сторонами 134, 98 и 58
Найти высоту треугольника со сторонами 56, 48 и 28
Найти высоту треугольника со сторонами 52, 51 и 45
Найти высоту треугольника со сторонами 107, 96 и 42
Найти высоту треугольника со сторонами 117, 101 и 23
Найти высоту треугольника со сторонами 134, 98 и 58
Найти высоту треугольника со сторонами 56, 48 и 28
Найти высоту треугольника со сторонами 52, 51 и 45