Рассчитать высоту треугольника со сторонами 90, 76 и 19
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{90 + 76 + 19}{2}} \normalsize = 92.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{92.5(92.5-90)(92.5-76)(92.5-19)}}{76}\normalsize = 13.9361533}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{92.5(92.5-90)(92.5-76)(92.5-19)}}{90}\normalsize = 11.7683073}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{92.5(92.5-90)(92.5-76)(92.5-19)}}{19}\normalsize = 55.7446133}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 90, 76 и 19 равна 13.9361533
Высота треугольника опущенная с вершины A на сторону BC со сторонами 90, 76 и 19 равна 11.7683073
Высота треугольника опущенная с вершины C на сторону AB со сторонами 90, 76 и 19 равна 55.7446133
Ссылка на результат
?n1=90&n2=76&n3=19
Найти высоту треугольника со сторонами 124, 117 и 112
Найти высоту треугольника со сторонами 79, 63 и 25
Найти высоту треугольника со сторонами 115, 85 и 48
Найти высоту треугольника со сторонами 146, 143 и 118
Найти высоту треугольника со сторонами 118, 72 и 63
Найти высоту треугольника со сторонами 84, 61 и 25
Найти высоту треугольника со сторонами 79, 63 и 25
Найти высоту треугольника со сторонами 115, 85 и 48
Найти высоту треугольника со сторонами 146, 143 и 118
Найти высоту треугольника со сторонами 118, 72 и 63
Найти высоту треугольника со сторонами 84, 61 и 25