Рассчитать высоту треугольника со сторонами 90, 81 и 12
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{90 + 81 + 12}{2}} \normalsize = 91.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{91.5(91.5-90)(91.5-81)(91.5-12)}}{81}\normalsize = 8.35755738}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{91.5(91.5-90)(91.5-81)(91.5-12)}}{90}\normalsize = 7.52180165}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{91.5(91.5-90)(91.5-81)(91.5-12)}}{12}\normalsize = 56.4135123}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 90, 81 и 12 равна 8.35755738
Высота треугольника опущенная с вершины A на сторону BC со сторонами 90, 81 и 12 равна 7.52180165
Высота треугольника опущенная с вершины C на сторону AB со сторонами 90, 81 и 12 равна 56.4135123
Ссылка на результат
?n1=90&n2=81&n3=12
Найти высоту треугольника со сторонами 123, 98 и 77
Найти высоту треугольника со сторонами 123, 109 и 76
Найти высоту треугольника со сторонами 138, 134 и 30
Найти высоту треугольника со сторонами 131, 124 и 57
Найти высоту треугольника со сторонами 101, 95 и 34
Найти высоту треугольника со сторонами 140, 101 и 100
Найти высоту треугольника со сторонами 123, 109 и 76
Найти высоту треугольника со сторонами 138, 134 и 30
Найти высоту треугольника со сторонами 131, 124 и 57
Найти высоту треугольника со сторонами 101, 95 и 34
Найти высоту треугольника со сторонами 140, 101 и 100