Рассчитать высоту треугольника со сторонами 90, 84 и 41
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{90 + 84 + 41}{2}} \normalsize = 107.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{107.5(107.5-90)(107.5-84)(107.5-41)}}{84}\normalsize = 40.8242975}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{107.5(107.5-90)(107.5-84)(107.5-41)}}{90}\normalsize = 38.1026776}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{107.5(107.5-90)(107.5-84)(107.5-41)}}{41}\normalsize = 83.6400241}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 90, 84 и 41 равна 40.8242975
Высота треугольника опущенная с вершины A на сторону BC со сторонами 90, 84 и 41 равна 38.1026776
Высота треугольника опущенная с вершины C на сторону AB со сторонами 90, 84 и 41 равна 83.6400241
Ссылка на результат
?n1=90&n2=84&n3=41
Найти высоту треугольника со сторонами 72, 69 и 40
Найти высоту треугольника со сторонами 131, 96 и 87
Найти высоту треугольника со сторонами 147, 126 и 57
Найти высоту треугольника со сторонами 138, 130 и 93
Найти высоту треугольника со сторонами 43, 38 и 13
Найти высоту треугольника со сторонами 127, 96 и 38
Найти высоту треугольника со сторонами 131, 96 и 87
Найти высоту треугольника со сторонами 147, 126 и 57
Найти высоту треугольника со сторонами 138, 130 и 93
Найти высоту треугольника со сторонами 43, 38 и 13
Найти высоту треугольника со сторонами 127, 96 и 38