Рассчитать высоту треугольника со сторонами 90, 84 и 56

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{90 + 84 + 56}{2}} \normalsize = 115}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{115(115-90)(115-84)(115-56)}}{84}\normalsize = 54.5979689}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{115(115-90)(115-84)(115-56)}}{90}\normalsize = 50.9581043}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{115(115-90)(115-84)(115-56)}}{56}\normalsize = 81.8969534}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 90, 84 и 56 равна 54.5979689
Высота треугольника опущенная с вершины A на сторону BC со сторонами 90, 84 и 56 равна 50.9581043
Высота треугольника опущенная с вершины C на сторону AB со сторонами 90, 84 и 56 равна 81.8969534
Ссылка на результат
?n1=90&n2=84&n3=56