Рассчитать высоту треугольника со сторонами 90, 85 и 27
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{90 + 85 + 27}{2}} \normalsize = 101}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{101(101-90)(101-85)(101-27)}}{85}\normalsize = 26.9863377}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{101(101-90)(101-85)(101-27)}}{90}\normalsize = 25.4870967}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{101(101-90)(101-85)(101-27)}}{27}\normalsize = 84.956989}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 90, 85 и 27 равна 26.9863377
Высота треугольника опущенная с вершины A на сторону BC со сторонами 90, 85 и 27 равна 25.4870967
Высота треугольника опущенная с вершины C на сторону AB со сторонами 90, 85 и 27 равна 84.956989
Ссылка на результат
?n1=90&n2=85&n3=27
Найти высоту треугольника со сторонами 136, 125 и 47
Найти высоту треугольника со сторонами 140, 80 и 71
Найти высоту треугольника со сторонами 148, 134 и 128
Найти высоту треугольника со сторонами 146, 128 и 120
Найти высоту треугольника со сторонами 114, 111 и 103
Найти высоту треугольника со сторонами 129, 99 и 69
Найти высоту треугольника со сторонами 140, 80 и 71
Найти высоту треугольника со сторонами 148, 134 и 128
Найти высоту треугольника со сторонами 146, 128 и 120
Найти высоту треугольника со сторонами 114, 111 и 103
Найти высоту треугольника со сторонами 129, 99 и 69