Рассчитать высоту треугольника со сторонами 90, 88 и 40
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{90 + 88 + 40}{2}} \normalsize = 109}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{109(109-90)(109-88)(109-40)}}{88}\normalsize = 39.3705576}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{109(109-90)(109-88)(109-40)}}{90}\normalsize = 38.4956563}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{109(109-90)(109-88)(109-40)}}{40}\normalsize = 86.6152267}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 90, 88 и 40 равна 39.3705576
Высота треугольника опущенная с вершины A на сторону BC со сторонами 90, 88 и 40 равна 38.4956563
Высота треугольника опущенная с вершины C на сторону AB со сторонами 90, 88 и 40 равна 86.6152267
Ссылка на результат
?n1=90&n2=88&n3=40
Найти высоту треугольника со сторонами 92, 76 и 26
Найти высоту треугольника со сторонами 132, 108 и 81
Найти высоту треугольника со сторонами 78, 50 и 30
Найти высоту треугольника со сторонами 100, 72 и 29
Найти высоту треугольника со сторонами 116, 102 и 71
Найти высоту треугольника со сторонами 148, 128 и 45
Найти высоту треугольника со сторонами 132, 108 и 81
Найти высоту треугольника со сторонами 78, 50 и 30
Найти высоту треугольника со сторонами 100, 72 и 29
Найти высоту треугольника со сторонами 116, 102 и 71
Найти высоту треугольника со сторонами 148, 128 и 45