Рассчитать высоту треугольника со сторонами 91, 55 и 44
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{91 + 55 + 44}{2}} \normalsize = 95}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{95(95-91)(95-55)(95-44)}}{55}\normalsize = 32.0165247}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{95(95-91)(95-55)(95-44)}}{91}\normalsize = 19.3506468}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{95(95-91)(95-55)(95-44)}}{44}\normalsize = 40.0206558}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 91, 55 и 44 равна 32.0165247
Высота треугольника опущенная с вершины A на сторону BC со сторонами 91, 55 и 44 равна 19.3506468
Высота треугольника опущенная с вершины C на сторону AB со сторонами 91, 55 и 44 равна 40.0206558
Ссылка на результат
?n1=91&n2=55&n3=44
Найти высоту треугольника со сторонами 95, 65 и 38
Найти высоту треугольника со сторонами 88, 86 и 73
Найти высоту треугольника со сторонами 110, 103 и 83
Найти высоту треугольника со сторонами 147, 144 и 108
Найти высоту треугольника со сторонами 117, 94 и 43
Найти высоту треугольника со сторонами 144, 111 и 65
Найти высоту треугольника со сторонами 88, 86 и 73
Найти высоту треугольника со сторонами 110, 103 и 83
Найти высоту треугольника со сторонами 147, 144 и 108
Найти высоту треугольника со сторонами 117, 94 и 43
Найти высоту треугольника со сторонами 144, 111 и 65