Рассчитать высоту треугольника со сторонами 91, 57 и 37
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{91 + 57 + 37}{2}} \normalsize = 92.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{92.5(92.5-91)(92.5-57)(92.5-37)}}{57}\normalsize = 18.3456162}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{92.5(92.5-91)(92.5-57)(92.5-37)}}{91}\normalsize = 11.4912102}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{92.5(92.5-91)(92.5-57)(92.5-37)}}{37}\normalsize = 28.2621655}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 91, 57 и 37 равна 18.3456162
Высота треугольника опущенная с вершины A на сторону BC со сторонами 91, 57 и 37 равна 11.4912102
Высота треугольника опущенная с вершины C на сторону AB со сторонами 91, 57 и 37 равна 28.2621655
Ссылка на результат
?n1=91&n2=57&n3=37
Найти высоту треугольника со сторонами 129, 91 и 41
Найти высоту треугольника со сторонами 68, 63 и 12
Найти высоту треугольника со сторонами 105, 97 и 54
Найти высоту треугольника со сторонами 51, 38 и 19
Найти высоту треугольника со сторонами 42, 36 и 34
Найти высоту треугольника со сторонами 150, 131 и 31
Найти высоту треугольника со сторонами 68, 63 и 12
Найти высоту треугольника со сторонами 105, 97 и 54
Найти высоту треугольника со сторонами 51, 38 и 19
Найти высоту треугольника со сторонами 42, 36 и 34
Найти высоту треугольника со сторонами 150, 131 и 31