Рассчитать высоту треугольника со сторонами 91, 59 и 46
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{91 + 59 + 46}{2}} \normalsize = 98}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{98(98-91)(98-59)(98-46)}}{59}\normalsize = 39.9828748}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{98(98-91)(98-59)(98-46)}}{91}\normalsize = 25.9229628}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{98(98-91)(98-59)(98-46)}}{46}\normalsize = 51.2823829}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 91, 59 и 46 равна 39.9828748
Высота треугольника опущенная с вершины A на сторону BC со сторонами 91, 59 и 46 равна 25.9229628
Высота треугольника опущенная с вершины C на сторону AB со сторонами 91, 59 и 46 равна 51.2823829
Ссылка на результат
?n1=91&n2=59&n3=46
Найти высоту треугольника со сторонами 93, 63 и 47
Найти высоту треугольника со сторонами 96, 95 и 17
Найти высоту треугольника со сторонами 97, 96 и 20
Найти высоту треугольника со сторонами 134, 89 и 76
Найти высоту треугольника со сторонами 149, 133 и 116
Найти высоту треугольника со сторонами 64, 55 и 33
Найти высоту треугольника со сторонами 96, 95 и 17
Найти высоту треугольника со сторонами 97, 96 и 20
Найти высоту треугольника со сторонами 134, 89 и 76
Найти высоту треугольника со сторонами 149, 133 и 116
Найти высоту треугольника со сторонами 64, 55 и 33