Рассчитать высоту треугольника со сторонами 91, 68 и 38

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{91 + 68 + 38}{2}} \normalsize = 98.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{98.5(98.5-91)(98.5-68)(98.5-38)}}{68}\normalsize = 34.3397743}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{98.5(98.5-91)(98.5-68)(98.5-38)}}{91}\normalsize = 25.6604907}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{98.5(98.5-91)(98.5-68)(98.5-38)}}{38}\normalsize = 61.4501225}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 91, 68 и 38 равна 34.3397743
Высота треугольника опущенная с вершины A на сторону BC со сторонами 91, 68 и 38 равна 25.6604907
Высота треугольника опущенная с вершины C на сторону AB со сторонами 91, 68 и 38 равна 61.4501225
Ссылка на результат
?n1=91&n2=68&n3=38