Рассчитать высоту треугольника со сторонами 91, 69 и 23
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{91 + 69 + 23}{2}} \normalsize = 91.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{91.5(91.5-91)(91.5-69)(91.5-23)}}{69}\normalsize = 7.69684958}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{91.5(91.5-91)(91.5-69)(91.5-23)}}{91}\normalsize = 5.83607275}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{91.5(91.5-91)(91.5-69)(91.5-23)}}{23}\normalsize = 23.0905487}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 91, 69 и 23 равна 7.69684958
Высота треугольника опущенная с вершины A на сторону BC со сторонами 91, 69 и 23 равна 5.83607275
Высота треугольника опущенная с вершины C на сторону AB со сторонами 91, 69 и 23 равна 23.0905487
Ссылка на результат
?n1=91&n2=69&n3=23
Найти высоту треугольника со сторонами 124, 98 и 29
Найти высоту треугольника со сторонами 124, 108 и 68
Найти высоту треугольника со сторонами 95, 65 и 47
Найти высоту треугольника со сторонами 138, 106 и 95
Найти высоту треугольника со сторонами 115, 92 и 79
Найти высоту треугольника со сторонами 137, 117 и 96
Найти высоту треугольника со сторонами 124, 108 и 68
Найти высоту треугольника со сторонами 95, 65 и 47
Найти высоту треугольника со сторонами 138, 106 и 95
Найти высоту треугольника со сторонами 115, 92 и 79
Найти высоту треугольника со сторонами 137, 117 и 96