Рассчитать высоту треугольника со сторонами 91, 76 и 50

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{91 + 76 + 50}{2}} \normalsize = 108.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{108.5(108.5-91)(108.5-76)(108.5-50)}}{76}\normalsize = 49.9999892}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{108.5(108.5-91)(108.5-76)(108.5-50)}}{91}\normalsize = 41.7582327}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{108.5(108.5-91)(108.5-76)(108.5-50)}}{50}\normalsize = 75.9999836}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 91, 76 и 50 равна 49.9999892
Высота треугольника опущенная с вершины A на сторону BC со сторонами 91, 76 и 50 равна 41.7582327
Высота треугольника опущенная с вершины C на сторону AB со сторонами 91, 76 и 50 равна 75.9999836
Ссылка на результат
?n1=91&n2=76&n3=50