Рассчитать высоту треугольника со сторонами 91, 82 и 61
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{91 + 82 + 61}{2}} \normalsize = 117}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{117(117-91)(117-82)(117-61)}}{82}\normalsize = 59.5557617}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{117(117-91)(117-82)(117-61)}}{91}\normalsize = 53.6656315}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{117(117-91)(117-82)(117-61)}}{61}\normalsize = 80.058565}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 91, 82 и 61 равна 59.5557617
Высота треугольника опущенная с вершины A на сторону BC со сторонами 91, 82 и 61 равна 53.6656315
Высота треугольника опущенная с вершины C на сторону AB со сторонами 91, 82 и 61 равна 80.058565
Ссылка на результат
?n1=91&n2=82&n3=61
Найти высоту треугольника со сторонами 104, 84 и 35
Найти высоту треугольника со сторонами 131, 131 и 126
Найти высоту треугольника со сторонами 147, 131 и 70
Найти высоту треугольника со сторонами 108, 103 и 60
Найти высоту треугольника со сторонами 128, 116 и 47
Найти высоту треугольника со сторонами 126, 94 и 33
Найти высоту треугольника со сторонами 131, 131 и 126
Найти высоту треугольника со сторонами 147, 131 и 70
Найти высоту треугольника со сторонами 108, 103 и 60
Найти высоту треугольника со сторонами 128, 116 и 47
Найти высоту треугольника со сторонами 126, 94 и 33