Рассчитать высоту треугольника со сторонами 91, 83 и 26
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{91 + 83 + 26}{2}} \normalsize = 100}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{100(100-91)(100-83)(100-26)}}{83}\normalsize = 25.6397318}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{100(100-91)(100-83)(100-26)}}{91}\normalsize = 23.3856895}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{100(100-91)(100-83)(100-26)}}{26}\normalsize = 81.8499132}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 91, 83 и 26 равна 25.6397318
Высота треугольника опущенная с вершины A на сторону BC со сторонами 91, 83 и 26 равна 23.3856895
Высота треугольника опущенная с вершины C на сторону AB со сторонами 91, 83 и 26 равна 81.8499132
Ссылка на результат
?n1=91&n2=83&n3=26
Найти высоту треугольника со сторонами 113, 106 и 46
Найти высоту треугольника со сторонами 99, 83 и 74
Найти высоту треугольника со сторонами 92, 83 и 70
Найти высоту треугольника со сторонами 107, 85 и 29
Найти высоту треугольника со сторонами 36, 35 и 19
Найти высоту треугольника со сторонами 149, 107 и 59
Найти высоту треугольника со сторонами 99, 83 и 74
Найти высоту треугольника со сторонами 92, 83 и 70
Найти высоту треугольника со сторонами 107, 85 и 29
Найти высоту треугольника со сторонами 36, 35 и 19
Найти высоту треугольника со сторонами 149, 107 и 59