Рассчитать высоту треугольника со сторонами 91, 83 и 35
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{91 + 83 + 35}{2}} \normalsize = 104.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{104.5(104.5-91)(104.5-83)(104.5-35)}}{83}\normalsize = 34.9855387}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{104.5(104.5-91)(104.5-83)(104.5-35)}}{91}\normalsize = 31.9098869}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{104.5(104.5-91)(104.5-83)(104.5-35)}}{35}\normalsize = 82.965706}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 91, 83 и 35 равна 34.9855387
Высота треугольника опущенная с вершины A на сторону BC со сторонами 91, 83 и 35 равна 31.9098869
Высота треугольника опущенная с вершины C на сторону AB со сторонами 91, 83 и 35 равна 82.965706
Ссылка на результат
?n1=91&n2=83&n3=35
Найти высоту треугольника со сторонами 74, 71 и 25
Найти высоту треугольника со сторонами 72, 69 и 52
Найти высоту треугольника со сторонами 141, 121 и 53
Найти высоту треугольника со сторонами 143, 108 и 84
Найти высоту треугольника со сторонами 146, 91 и 63
Найти высоту треугольника со сторонами 148, 82 и 68
Найти высоту треугольника со сторонами 72, 69 и 52
Найти высоту треугольника со сторонами 141, 121 и 53
Найти высоту треугольника со сторонами 143, 108 и 84
Найти высоту треугольника со сторонами 146, 91 и 63
Найти высоту треугольника со сторонами 148, 82 и 68