Рассчитать высоту треугольника со сторонами 91, 84 и 30
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{91 + 84 + 30}{2}} \normalsize = 102.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{102.5(102.5-91)(102.5-84)(102.5-30)}}{84}\normalsize = 29.937562}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{102.5(102.5-91)(102.5-84)(102.5-30)}}{91}\normalsize = 27.6346726}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{102.5(102.5-91)(102.5-84)(102.5-30)}}{30}\normalsize = 83.8251736}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 91, 84 и 30 равна 29.937562
Высота треугольника опущенная с вершины A на сторону BC со сторонами 91, 84 и 30 равна 27.6346726
Высота треугольника опущенная с вершины C на сторону AB со сторонами 91, 84 и 30 равна 83.8251736
Ссылка на результат
?n1=91&n2=84&n3=30
Найти высоту треугольника со сторонами 72, 44 и 37
Найти высоту треугольника со сторонами 125, 97 и 80
Найти высоту треугольника со сторонами 148, 121 и 67
Найти высоту треугольника со сторонами 121, 86 и 83
Найти высоту треугольника со сторонами 29, 27 и 5
Найти высоту треугольника со сторонами 142, 109 и 105
Найти высоту треугольника со сторонами 125, 97 и 80
Найти высоту треугольника со сторонами 148, 121 и 67
Найти высоту треугольника со сторонами 121, 86 и 83
Найти высоту треугольника со сторонами 29, 27 и 5
Найти высоту треугольника со сторонами 142, 109 и 105