Рассчитать высоту треугольника со сторонами 91, 88 и 18

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{91 + 88 + 18}{2}} \normalsize = 98.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{98.5(98.5-91)(98.5-88)(98.5-18)}}{88}\normalsize = 17.9592692}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{98.5(98.5-91)(98.5-88)(98.5-18)}}{91}\normalsize = 17.3672054}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{98.5(98.5-91)(98.5-88)(98.5-18)}}{18}\normalsize = 87.8008716}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 91, 88 и 18 равна 17.9592692
Высота треугольника опущенная с вершины A на сторону BC со сторонами 91, 88 и 18 равна 17.3672054
Высота треугольника опущенная с вершины C на сторону AB со сторонами 91, 88 и 18 равна 87.8008716
Ссылка на результат
?n1=91&n2=88&n3=18