Рассчитать высоту треугольника со сторонами 91, 89 и 4
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{91 + 89 + 4}{2}} \normalsize = 92}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{92(92-91)(92-89)(92-4)}}{89}\normalsize = 3.50215905}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{92(92-91)(92-89)(92-4)}}{91}\normalsize = 3.42518853}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{92(92-91)(92-89)(92-4)}}{4}\normalsize = 77.923039}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 91, 89 и 4 равна 3.50215905
Высота треугольника опущенная с вершины A на сторону BC со сторонами 91, 89 и 4 равна 3.42518853
Высота треугольника опущенная с вершины C на сторону AB со сторонами 91, 89 и 4 равна 77.923039
Ссылка на результат
?n1=91&n2=89&n3=4
Найти высоту треугольника со сторонами 134, 132 и 104
Найти высоту треугольника со сторонами 134, 129 и 46
Найти высоту треугольника со сторонами 141, 108 и 42
Найти высоту треугольника со сторонами 50, 43 и 24
Найти высоту треугольника со сторонами 82, 78 и 65
Найти высоту треугольника со сторонами 116, 111 и 32
Найти высоту треугольника со сторонами 134, 129 и 46
Найти высоту треугольника со сторонами 141, 108 и 42
Найти высоту треугольника со сторонами 50, 43 и 24
Найти высоту треугольника со сторонами 82, 78 и 65
Найти высоту треугольника со сторонами 116, 111 и 32