Рассчитать высоту треугольника со сторонами 91, 89 и 63

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{91 + 89 + 63}{2}} \normalsize = 121.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{121.5(121.5-91)(121.5-89)(121.5-63)}}{89}\normalsize = 59.6482438}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{121.5(121.5-91)(121.5-89)(121.5-63)}}{91}\normalsize = 58.3372934}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{121.5(121.5-91)(121.5-89)(121.5-63)}}{63}\normalsize = 84.2649793}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 91, 89 и 63 равна 59.6482438
Высота треугольника опущенная с вершины A на сторону BC со сторонами 91, 89 и 63 равна 58.3372934
Высота треугольника опущенная с вершины C на сторону AB со сторонами 91, 89 и 63 равна 84.2649793
Ссылка на результат
?n1=91&n2=89&n3=63