Рассчитать высоту треугольника со сторонами 91, 90 и 39
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{91 + 90 + 39}{2}} \normalsize = 110}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{110(110-91)(110-90)(110-39)}}{90}\normalsize = 38.2828976}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{110(110-91)(110-90)(110-39)}}{91}\normalsize = 37.8622064}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{110(110-91)(110-90)(110-39)}}{39}\normalsize = 88.3451483}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 91, 90 и 39 равна 38.2828976
Высота треугольника опущенная с вершины A на сторону BC со сторонами 91, 90 и 39 равна 37.8622064
Высота треугольника опущенная с вершины C на сторону AB со сторонами 91, 90 и 39 равна 88.3451483
Ссылка на результат
?n1=91&n2=90&n3=39
Найти высоту треугольника со сторонами 124, 81 и 73
Найти высоту треугольника со сторонами 66, 57 и 21
Найти высоту треугольника со сторонами 45, 26 и 22
Найти высоту треугольника со сторонами 129, 103 и 38
Найти высоту треугольника со сторонами 93, 65 и 46
Найти высоту треугольника со сторонами 85, 66 и 22
Найти высоту треугольника со сторонами 66, 57 и 21
Найти высоту треугольника со сторонами 45, 26 и 22
Найти высоту треугольника со сторонами 129, 103 и 38
Найти высоту треугольника со сторонами 93, 65 и 46
Найти высоту треугольника со сторонами 85, 66 и 22