Рассчитать высоту треугольника со сторонами 92, 56 и 42
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{92 + 56 + 42}{2}} \normalsize = 95}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{95(95-92)(95-56)(95-42)}}{56}\normalsize = 27.4116159}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{95(95-92)(95-56)(95-42)}}{92}\normalsize = 16.6853314}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{95(95-92)(95-56)(95-42)}}{42}\normalsize = 36.5488211}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 92, 56 и 42 равна 27.4116159
Высота треугольника опущенная с вершины A на сторону BC со сторонами 92, 56 и 42 равна 16.6853314
Высота треугольника опущенная с вершины C на сторону AB со сторонами 92, 56 и 42 равна 36.5488211
Ссылка на результат
?n1=92&n2=56&n3=42
Найти высоту треугольника со сторонами 149, 133 и 17
Найти высоту треугольника со сторонами 125, 94 и 84
Найти высоту треугольника со сторонами 120, 78 и 49
Найти высоту треугольника со сторонами 106, 62 и 51
Найти высоту треугольника со сторонами 107, 80 и 63
Найти высоту треугольника со сторонами 131, 128 и 56
Найти высоту треугольника со сторонами 125, 94 и 84
Найти высоту треугольника со сторонами 120, 78 и 49
Найти высоту треугольника со сторонами 106, 62 и 51
Найти высоту треугольника со сторонами 107, 80 и 63
Найти высоту треугольника со сторонами 131, 128 и 56