Рассчитать высоту треугольника со сторонами 92, 64 и 47

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{92 + 64 + 47}{2}} \normalsize = 101.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{101.5(101.5-92)(101.5-64)(101.5-47)}}{64}\normalsize = 43.8691006}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{101.5(101.5-92)(101.5-64)(101.5-47)}}{92}\normalsize = 30.5176352}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{101.5(101.5-92)(101.5-64)(101.5-47)}}{47}\normalsize = 59.7366476}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 92, 64 и 47 равна 43.8691006
Высота треугольника опущенная с вершины A на сторону BC со сторонами 92, 64 и 47 равна 30.5176352
Высота треугольника опущенная с вершины C на сторону AB со сторонами 92, 64 и 47 равна 59.7366476
Ссылка на результат
?n1=92&n2=64&n3=47