Рассчитать высоту треугольника со сторонами 92, 64 и 59
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{92 + 64 + 59}{2}} \normalsize = 107.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{107.5(107.5-92)(107.5-64)(107.5-59)}}{64}\normalsize = 58.5916328}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{107.5(107.5-92)(107.5-64)(107.5-59)}}{92}\normalsize = 40.7593967}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{107.5(107.5-92)(107.5-64)(107.5-59)}}{59}\normalsize = 63.5570254}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 92, 64 и 59 равна 58.5916328
Высота треугольника опущенная с вершины A на сторону BC со сторонами 92, 64 и 59 равна 40.7593967
Высота треугольника опущенная с вершины C на сторону AB со сторонами 92, 64 и 59 равна 63.5570254
Ссылка на результат
?n1=92&n2=64&n3=59
Найти высоту треугольника со сторонами 106, 100 и 38
Найти высоту треугольника со сторонами 141, 120 и 105
Найти высоту треугольника со сторонами 137, 107 и 78
Найти высоту треугольника со сторонами 62, 62 и 9
Найти высоту треугольника со сторонами 76, 49 и 34
Найти высоту треугольника со сторонами 133, 129 и 60
Найти высоту треугольника со сторонами 141, 120 и 105
Найти высоту треугольника со сторонами 137, 107 и 78
Найти высоту треугольника со сторонами 62, 62 и 9
Найти высоту треугольника со сторонами 76, 49 и 34
Найти высоту треугольника со сторонами 133, 129 и 60