Рассчитать высоту треугольника со сторонами 92, 65 и 34
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{92 + 65 + 34}{2}} \normalsize = 95.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{95.5(95.5-92)(95.5-65)(95.5-34)}}{65}\normalsize = 24.3635082}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{95.5(95.5-92)(95.5-65)(95.5-34)}}{92}\normalsize = 17.2133482}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{95.5(95.5-92)(95.5-65)(95.5-34)}}{34}\normalsize = 46.5772951}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 92, 65 и 34 равна 24.3635082
Высота треугольника опущенная с вершины A на сторону BC со сторонами 92, 65 и 34 равна 17.2133482
Высота треугольника опущенная с вершины C на сторону AB со сторонами 92, 65 и 34 равна 46.5772951
Ссылка на результат
?n1=92&n2=65&n3=34
Найти высоту треугольника со сторонами 132, 131 и 44
Найти высоту треугольника со сторонами 137, 137 и 78
Найти высоту треугольника со сторонами 148, 99 и 62
Найти высоту треугольника со сторонами 98, 89 и 74
Найти высоту треугольника со сторонами 146, 129 и 95
Найти высоту треугольника со сторонами 142, 133 и 67
Найти высоту треугольника со сторонами 137, 137 и 78
Найти высоту треугольника со сторонами 148, 99 и 62
Найти высоту треугольника со сторонами 98, 89 и 74
Найти высоту треугольника со сторонами 146, 129 и 95
Найти высоту треугольника со сторонами 142, 133 и 67