Рассчитать высоту треугольника со сторонами 92, 67 и 40
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{92 + 67 + 40}{2}} \normalsize = 99.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{99.5(99.5-92)(99.5-67)(99.5-40)}}{67}\normalsize = 35.8589467}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{99.5(99.5-92)(99.5-67)(99.5-40)}}{92}\normalsize = 26.1146677}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{99.5(99.5-92)(99.5-67)(99.5-40)}}{40}\normalsize = 60.0637357}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 92, 67 и 40 равна 35.8589467
Высота треугольника опущенная с вершины A на сторону BC со сторонами 92, 67 и 40 равна 26.1146677
Высота треугольника опущенная с вершины C на сторону AB со сторонами 92, 67 и 40 равна 60.0637357
Ссылка на результат
?n1=92&n2=67&n3=40
Найти высоту треугольника со сторонами 100, 67 и 45
Найти высоту треугольника со сторонами 112, 99 и 51
Найти высоту треугольника со сторонами 111, 99 и 99
Найти высоту треугольника со сторонами 127, 113 и 108
Найти высоту треугольника со сторонами 97, 92 и 17
Найти высоту треугольника со сторонами 145, 76 и 70
Найти высоту треугольника со сторонами 112, 99 и 51
Найти высоту треугольника со сторонами 111, 99 и 99
Найти высоту треугольника со сторонами 127, 113 и 108
Найти высоту треугольника со сторонами 97, 92 и 17
Найти высоту треугольника со сторонами 145, 76 и 70