Рассчитать высоту треугольника со сторонами 92, 68 и 43
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{92 + 68 + 43}{2}} \normalsize = 101.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{101.5(101.5-92)(101.5-68)(101.5-43)}}{68}\normalsize = 40.4311639}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{101.5(101.5-92)(101.5-68)(101.5-43)}}{92}\normalsize = 29.8839037}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{101.5(101.5-92)(101.5-68)(101.5-43)}}{43}\normalsize = 63.9376545}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 92, 68 и 43 равна 40.4311639
Высота треугольника опущенная с вершины A на сторону BC со сторонами 92, 68 и 43 равна 29.8839037
Высота треугольника опущенная с вершины C на сторону AB со сторонами 92, 68 и 43 равна 63.9376545
Ссылка на результат
?n1=92&n2=68&n3=43
Найти высоту треугольника со сторонами 144, 128 и 51
Найти высоту треугольника со сторонами 94, 87 и 12
Найти высоту треугольника со сторонами 106, 97 и 71
Найти высоту треугольника со сторонами 136, 122 и 97
Найти высоту треугольника со сторонами 78, 63 и 28
Найти высоту треугольника со сторонами 143, 104 и 43
Найти высоту треугольника со сторонами 94, 87 и 12
Найти высоту треугольника со сторонами 106, 97 и 71
Найти высоту треугольника со сторонами 136, 122 и 97
Найти высоту треугольника со сторонами 78, 63 и 28
Найти высоту треугольника со сторонами 143, 104 и 43