Рассчитать высоту треугольника со сторонами 92, 68 и 47

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{92 + 68 + 47}{2}} \normalsize = 103.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{103.5(103.5-92)(103.5-68)(103.5-47)}}{68}\normalsize = 45.4442121}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{103.5(103.5-92)(103.5-68)(103.5-47)}}{92}\normalsize = 33.5892003}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{103.5(103.5-92)(103.5-68)(103.5-47)}}{47}\normalsize = 65.7490729}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 92, 68 и 47 равна 45.4442121
Высота треугольника опущенная с вершины A на сторону BC со сторонами 92, 68 и 47 равна 33.5892003
Высота треугольника опущенная с вершины C на сторону AB со сторонами 92, 68 и 47 равна 65.7490729
Ссылка на результат
?n1=92&n2=68&n3=47