Рассчитать высоту треугольника со сторонами 92, 71 и 61
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{92 + 71 + 61}{2}} \normalsize = 112}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{112(112-92)(112-71)(112-61)}}{71}\normalsize = 60.9638902}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{112(112-92)(112-71)(112-61)}}{92}\normalsize = 47.0482196}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{112(112-92)(112-71)(112-61)}}{61}\normalsize = 70.9579706}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 92, 71 и 61 равна 60.9638902
Высота треугольника опущенная с вершины A на сторону BC со сторонами 92, 71 и 61 равна 47.0482196
Высота треугольника опущенная с вершины C на сторону AB со сторонами 92, 71 и 61 равна 70.9579706
Ссылка на результат
?n1=92&n2=71&n3=61
Найти высоту треугольника со сторонами 74, 48 и 47
Найти высоту треугольника со сторонами 120, 100 и 84
Найти высоту треугольника со сторонами 130, 118 и 69
Найти высоту треугольника со сторонами 116, 59 и 59
Найти высоту треугольника со сторонами 146, 104 и 93
Найти высоту треугольника со сторонами 129, 88 и 49
Найти высоту треугольника со сторонами 120, 100 и 84
Найти высоту треугольника со сторонами 130, 118 и 69
Найти высоту треугольника со сторонами 116, 59 и 59
Найти высоту треугольника со сторонами 146, 104 и 93
Найти высоту треугольника со сторонами 129, 88 и 49