Рассчитать высоту треугольника со сторонами 92, 76 и 23
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{92 + 76 + 23}{2}} \normalsize = 95.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{95.5(95.5-92)(95.5-76)(95.5-23)}}{76}\normalsize = 18.0899939}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{95.5(95.5-92)(95.5-76)(95.5-23)}}{92}\normalsize = 14.943908}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{95.5(95.5-92)(95.5-76)(95.5-23)}}{23}\normalsize = 59.775632}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 92, 76 и 23 равна 18.0899939
Высота треугольника опущенная с вершины A на сторону BC со сторонами 92, 76 и 23 равна 14.943908
Высота треугольника опущенная с вершины C на сторону AB со сторонами 92, 76 и 23 равна 59.775632
Ссылка на результат
?n1=92&n2=76&n3=23
Найти высоту треугольника со сторонами 142, 119 и 32
Найти высоту треугольника со сторонами 113, 107 и 21
Найти высоту треугольника со сторонами 80, 79 и 59
Найти высоту треугольника со сторонами 135, 78 и 61
Найти высоту треугольника со сторонами 115, 109 и 69
Найти высоту треугольника со сторонами 71, 66 и 21
Найти высоту треугольника со сторонами 113, 107 и 21
Найти высоту треугольника со сторонами 80, 79 и 59
Найти высоту треугольника со сторонами 135, 78 и 61
Найти высоту треугольника со сторонами 115, 109 и 69
Найти высоту треугольника со сторонами 71, 66 и 21