Рассчитать высоту треугольника со сторонами 92, 76 и 59
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{92 + 76 + 59}{2}} \normalsize = 113.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{113.5(113.5-92)(113.5-76)(113.5-59)}}{76}\normalsize = 58.7688847}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{113.5(113.5-92)(113.5-76)(113.5-59)}}{92}\normalsize = 48.5482091}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{113.5(113.5-92)(113.5-76)(113.5-59)}}{59}\normalsize = 75.7022922}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 92, 76 и 59 равна 58.7688847
Высота треугольника опущенная с вершины A на сторону BC со сторонами 92, 76 и 59 равна 48.5482091
Высота треугольника опущенная с вершины C на сторону AB со сторонами 92, 76 и 59 равна 75.7022922
Ссылка на результат
?n1=92&n2=76&n3=59
Найти высоту треугольника со сторонами 145, 100 и 58
Найти высоту треугольника со сторонами 60, 41 и 20
Найти высоту треугольника со сторонами 133, 122 и 65
Найти высоту треугольника со сторонами 134, 124 и 64
Найти высоту треугольника со сторонами 111, 106 и 31
Найти высоту треугольника со сторонами 137, 110 и 98
Найти высоту треугольника со сторонами 60, 41 и 20
Найти высоту треугольника со сторонами 133, 122 и 65
Найти высоту треугольника со сторонами 134, 124 и 64
Найти высоту треугольника со сторонами 111, 106 и 31
Найти высоту треугольника со сторонами 137, 110 и 98