Рассчитать высоту треугольника со сторонами 92, 78 и 17
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{92 + 78 + 17}{2}} \normalsize = 93.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{93.5(93.5-92)(93.5-78)(93.5-17)}}{78}\normalsize = 10.456429}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{93.5(93.5-92)(93.5-78)(93.5-17)}}{92}\normalsize = 8.86523332}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{93.5(93.5-92)(93.5-78)(93.5-17)}}{17}\normalsize = 47.9765568}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 92, 78 и 17 равна 10.456429
Высота треугольника опущенная с вершины A на сторону BC со сторонами 92, 78 и 17 равна 8.86523332
Высота треугольника опущенная с вершины C на сторону AB со сторонами 92, 78 и 17 равна 47.9765568
Ссылка на результат
?n1=92&n2=78&n3=17
Найти высоту треугольника со сторонами 130, 86 и 64
Найти высоту треугольника со сторонами 60, 60 и 36
Найти высоту треугольника со сторонами 139, 130 и 35
Найти высоту треугольника со сторонами 129, 84 и 67
Найти высоту треугольника со сторонами 62, 55 и 33
Найти высоту треугольника со сторонами 111, 94 и 67
Найти высоту треугольника со сторонами 60, 60 и 36
Найти высоту треугольника со сторонами 139, 130 и 35
Найти высоту треугольника со сторонами 129, 84 и 67
Найти высоту треугольника со сторонами 62, 55 и 33
Найти высоту треугольника со сторонами 111, 94 и 67