Рассчитать высоту треугольника со сторонами 92, 80 и 49

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{92 + 80 + 49}{2}} \normalsize = 110.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{110.5(110.5-92)(110.5-80)(110.5-49)}}{80}\normalsize = 48.9547108}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{110.5(110.5-92)(110.5-80)(110.5-49)}}{92}\normalsize = 42.5693138}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{110.5(110.5-92)(110.5-80)(110.5-49)}}{49}\normalsize = 79.9260585}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 92, 80 и 49 равна 48.9547108
Высота треугольника опущенная с вершины A на сторону BC со сторонами 92, 80 и 49 равна 42.5693138
Высота треугольника опущенная с вершины C на сторону AB со сторонами 92, 80 и 49 равна 79.9260585
Ссылка на результат
?n1=92&n2=80&n3=49