Рассчитать высоту треугольника со сторонами 92, 80 и 62
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{92 + 80 + 62}{2}} \normalsize = 117}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{117(117-92)(117-80)(117-62)}}{80}\normalsize = 60.9937241}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{117(117-92)(117-80)(117-62)}}{92}\normalsize = 53.0380209}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{117(117-92)(117-80)(117-62)}}{62}\normalsize = 78.7015794}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 92, 80 и 62 равна 60.9937241
Высота треугольника опущенная с вершины A на сторону BC со сторонами 92, 80 и 62 равна 53.0380209
Высота треугольника опущенная с вершины C на сторону AB со сторонами 92, 80 и 62 равна 78.7015794
Ссылка на результат
?n1=92&n2=80&n3=62
Найти высоту треугольника со сторонами 111, 99 и 62
Найти высоту треугольника со сторонами 133, 90 и 68
Найти высоту треугольника со сторонами 147, 144 и 5
Найти высоту треугольника со сторонами 139, 127 и 80
Найти высоту треугольника со сторонами 117, 115 и 66
Найти высоту треугольника со сторонами 148, 87 и 69
Найти высоту треугольника со сторонами 133, 90 и 68
Найти высоту треугольника со сторонами 147, 144 и 5
Найти высоту треугольника со сторонами 139, 127 и 80
Найти высоту треугольника со сторонами 117, 115 и 66
Найти высоту треугольника со сторонами 148, 87 и 69